
Software
Engineering
A PRACTITIONER’S APPROACH

N I N T H E D I T I O N

This International Student Edition is for use outside of the U.S.

ROGER S. PRESSMAN
BRUCE R. MAXIM

Software Engineering
a p r a c t i t i o n e r ’ s a p p r o a c h

Software Engineering
a p r a c t i t i o n e r ’ s a p p r o a c h

NINTH EDITION

Roger S. Pressman, Ph.D.
Bruce R. Maxim, Ph.D.

SOFTWARE ENGINEERING: A PRACTITIONER’S APPROACH

Published by McGraw-Hill Education, 2 Penn Plaza, New York, NY 10121. Copyright © 2020 by McGraw-Hill Education. All rights
reserved. Printed in the United States of America. No part of this publication may be reproduced or distributed in any form or by any
means, or stored in a database or retrieval system, without the prior written consent of McGraw-Hill Education, including, but not
limited to, in any network or other electronic storage or transmission, or broadcast for distance learning.

Some ancillaries, including electronic and print components, may not be available to customers outside the United States.

This book is printed on acid-free paper.

1 2 3 4 5 6 7 8 9 LCR 24 23 22 21 20 19

ISBN 978-1-260-54800-6
MHID 1-260-54800-7

Cover Image: ©R.L. Hausdorf/Shutterstock

All credits appearing on page or at the end of the book are considered to be an extension of the copyright page.

The Internet addresses listed in the text were accurate at the time of publication. The inclusion of a website does not indicate an
endorsement by the authors or McGraw-Hill Education, and McGraw-Hill Education does not guarantee the accuracy of the
information presented at these sites.

mheducation.com/highered

To Barbara, Matt, Mike,
Shiri, Adam, Lily,

and Maya.
—Roger S. Pressman

To my family who
support me in all

that I do.
—Bruce R. Maxim

vi

Roger S. Pressman is an internationally recognized consultant and author
in software engineering. For almost five decades, he has worked as a software
engineer, a manager, a professor, an author, a consultant, and an entrepreneur.

Dr. Pressman was president of R. S. Pressman & Associates, Inc., a con-
sulting firm that specialized in helping companies establish effective software
engineering strategies. Over the years he developed a set of techniques and
tools that improved software engineering practice. He is also the founder and
chief technology officer of EVANNEX®, an automotive aftermarket company
that specializes in the design and manufacture of accessories for the Tesla
line of electric vehicles.

Dr. Pressman is the author of ten books, including two novels, and many
technical and management papers. He has been on the editorial boards of IEEE Software
and The Cutter IT Journal and was editor of the “Manager” column in IEEE Software.

Dr. Pressman is a well-known speaker, keynoting a number of major industry
conferences. He has presented tutorials at the International Conference on Software
Engineering and at many other industry meetings. He has been a member of the ACM,
IEEE, Tau Beta Pi, Phi Kappa Phi, Eta Kappa Nu, and Pi Tau Sigma.

Bruce R. Maxim has worked as a software engineer, project manager, pro-
fessor, author, and consultant for more than thirty years. His research interests
include software engineering, user experience design, serious game develop-
ment, artificial intelligence, and engineering education.

Dr. Maxim is professor of computer and information science and collegiate
professor of engineering at the University of Michigan–Dearborn. He estab-
lished the GAME Lab in the College of Engineering and Computer Science.
He has published papers on computer algorithm animation, game development,
and engineering education. He is coauthor of a best-selling introductory com-
puter science text and two edited collections of software engineering research
papers. Dr. Maxim has supervised several hundred industry-based software

development projects as part of his work at the University of Michigan–Dearborn.
Dr. Maxim’s professional experience includes managing research information sys-

tems at a medical school, directing instructional computing for a medical campus, and
working as a statistical programmer. Dr. Maxim served as the chief technology officer
for a game development company.

Dr. Maxim was the recipient of several distinguished teaching awards, a distin-
guished community service award, and a distinguished faculty governance award. He
is a member of Sigma Xi, Upsilon Pi Epsilon, Pi Mu Epsilon, Association of Comput-
ing Machinery, IEEE Computer Society, American Society for Engineering Education,
Society of Women Engineers, and International Game Developers Association.

About the Authors

Michigan Creative/
UM-Dearborn

Courtesy of Roger Pressman

vii

CHAPTER 1 	 Software and Software Engineering  1

PART ONE 	 THE SOFTWARE PROCESS  19

CHAPTER 2 	 Process Models  20
CHAPTER 3 	 Agility and Process  37
CHAPTER 4 	 Recommended Process Model  54
CHAPTER 5 	 Human Aspects of Software Engineering  74

PART TWO 	 MODELING  83

CHAPTER 6 	 Principles That Guide Practice  84
CHAPTER 7 	 Understanding Requirements  102
CHAPTER 8 	 Requirements Modeling—A Recommended Approach  126
CHAPTER 9 	 Design Concepts  156
CHAPTER 10 	 Architectural Design—A Recommended Approach  181
CHAPTER 11 	 Component-Level Design  206
CHAPTER 12 	 User Experience Design  233
CHAPTER 13 	 Design for Mobility  264
CHAPTER 14 	 Pattern-Based Design  289

PART THREE 	 QUALITY AND SECURITY  309

CHAPTER 15	 Quality Concepts  310
CHAPTER 16 	 Reviews—A Recommended Approach  325
CHAPTER 17 	 Software Quality Assurance  339
CHAPTER 18 	 Software Security Engineering  356
CHAPTER 19 	 Software Testing—Component Level  372
CHAPTER 20 	 Software Testing—Integration Level  395
CHAPTER 21 	 Software Testing—Specialized Testing for Mobility  412
CHAPTER 22 	 Software Configuration Management  437
CHAPTER 23 	 Software Metrics and Analytics  460

Contents at a Glance

viii	 CONTENTS AT A GLANCE

PART FOUR 	 MANAGING SOFTWARE PROJECTS  489

CHAPTER 24 	 Project Management Concepts  490
CHAPTER 25 	 Creating a Viable Software Plan  504
CHAPTER 26 	 Risk Management  532
CHAPTER 27 	 A Strategy for Software Support  549

PART FIVE 	 ADVANCED TOPICS  567

CHAPTER 28 	 Software Process Improvement  568
CHAPTER 29 	 Emerging Trends in Software Engineering  583
CHAPTER 30 	 Concluding Comments  602

APPENDIX 1 	 An Introduction to UML  611
APPENDIX 2 	 Data Science for Software Engineers  629
REFERENCES   639
INDEX  659

ix

Table of Contents

Preface  xxvii

CHAPTER 1	 SOFTWARE AND SOFTWARE
ENGINEERING  1

1.1	 The Nature of Software  4
1.1.1	 Defining Software  5
1.1.2	 Software Application Domains  7
1.1.3	 Legacy Software  8

1.2	 Defining the Discipline  8

1.3	 The Software Process  9
1.3.1	 The Process Framework  10
1.3.2	 Umbrella Activities  11
1.3.3	 Process Adaptation  11

1.4	 Software Engineering Practice  12
1.4.1	 The Essence of Practice  12
1.4.2	 General Principles  14

1.5	 How It All Starts  15

1.6	 Summary  17

PART ONE	 THE SOFTWARE PROCESS  19

CHAPTER 2	 PROCESS MODELS  20

2.1	 A Generic Process Model  21

2.2	 Defining a Framework Activity  23

2.3	 Identifying a Task Set  23

2.4	 Process Assessment and Improvement  24

2.5	 Prescriptive Process Models  25
2.5.1	 The Waterfall Model  25
2.5.2	 Prototyping Process Model  26
2.5.3	 Evolutionary Process Model  29
2.5.4	 Unified Process Model  31

2.6	 Product and Process  33

2.7	 Summary  35

x	 TABLE OF CONTENTS

CHAPTER 3	 AGILITY AND PROCESS  37

3.1	 What Is Agility?  38

3.2	 Agility and the Cost of Change  39

3.3	 What Is an Agile Process?  40
3.3.1	 Agility Principles  40
3.3.2	 The Politics of Agile Development  41

3.4	 Scrum  42
3.4.1	 Scrum Teams and Artifacts  43
3.4.2	 Sprint Planning Meeting  44
3.4.3	 Daily Scrum Meeting  44
3.4.4	 Sprint Review Meeting  45
3.4.5	 Sprint Retrospective  45

3.5	 Other Agile Frameworks  46
3.5.1	 The XP Framework  46
3.5.2	 Kanban  48
3.5.3	 DevOps  50

3.6	 Summary  51

CHAPTER 4	 RECOMMENDED PROCESS MODEL  54

4.1	 Requirements Definition  57

4.2	 Preliminary Architectural Design  59

4.3	 Resource Estimation  60

4.4	 First Prototype Construction  61

4.5	 Prototype Evaluation  64

4.6	 Go, No-Go Decision  65

4.7	 Prototype Evolution  67
4.7.1	 New Prototype Scope  67
4.7.2	 Constructing New Prototypes  68
4.7.3	 Testing New Prototypes  68

4.8	 Prototype Release  68

4.9	 Maintain Release Software  69

4.10	 Summary  72

CHAPTER 5	 HUMAN ASPECTS OF SOFTWARE
ENGINEERING  74

5.1	 Characteristics of a Software Engineer  75

5.2	 The Psychology of Software Engineering  75

TABLE OF CONTENTS	 xi

5.3	 The Software Team  76

5.4	 Team Structures  78

5.5	 The Impact of Social Media  79

5.6	 Global Teams  80

5.7	 Summary  81

PART TWO	 MODELING  83

CHAPTER 6	 PRINCIPLES THAT
GUIDE PRACTICE  84

6.1	 Core Principles  85
6.1.1	 Principles That Guide Process  85
6.1.2	 Principles That Guide Practice  86

6.2	 Principles That Guide Each Framework Activity  88
6.2.1	 Communication Principles  88
6.2.2	 Planning Principles  91
6.2.3	 Modeling Principles  92
6.2.4	 Construction Principles  95
6.2.5	 Deployment Principles  98

6.3	 Summary  100

CHAPTER 7	 UNDERSTANDING REQUIREMENTS  102

7.1	 Requirements Engineering  103
7.1.1	 Inception  104
7.1.2	 Elicitation  104
7.1.3	 Elaboration  104
7.1.4	 Negotiation  105
7.1.5	 Specification  105
7.1.6	 Validation  105
7.1.7	 Requirements Management  106

7.2	 Establishing the Groundwork  107
7.2.1	 Identifying Stakeholders  107
7.2.2	 Recognizing Multiple Viewpoints  107
7.2.3	 Working Toward Collaboration  108
7.2.4	 Asking the First Questions  108
7.2.5	 Nonfunctional Requirements  109
7.2.6	 Traceability  109

xii	 TABLE OF CONTENTS

7.3	 Requirements Gathering  110
7.3.1	 Collaborative Requirements Gathering  110
7.3.2	 Usage Scenarios  113
7.3.3	 Elicitation Work Products  114

7.4	 Developing Use Cases  114

7.5	 Building the Analysis Model  118
7.5.1	 Elements of the Analysis Model  119
7.5.2	 Analysis Patterns  122

7.6	 Negotiating Requirements  122

7.7	 Requirements Monitoring  123

7.8	 Validating Requirements  123

7.9	 Summary  124

CHAPTER 8	 REQUIREMENTS MODELING—
A RECOMMENDED APPROACH  126

8.1	 Requirements Analysis  127
8.1.1	 Overall Objectives and Philosophy  128
8.1.2	 Analysis Rules of Thumb  128
8.1.3	 Requirements Modeling Principles  129

8.2	 Scenario-Based Modeling  130
8.2.1	 Actors and User Profiles  131
8.2.2	 Creating Use Cases  131
8.2.3	 Documenting Use Cases  135

8.3	 Class-Based Modeling  137
8.3.1	 Identifying Analysis Classes  137
8.3.2	 Defining Attributes and Operations  140
8.3.3	 UML Class Models  141
8.3.4	 Class-Responsibility-Collaborator Modeling  144

8.4	 Functional Modeling  146
8.4.1	 A Procedural View  146
8.4.2	 UML Sequence Diagrams  148

8.5	 Behavioral Modeling  149
8.5.1	 Identifying Events with the Use Case  149
8.5.2	 UML State Diagrams  150
8.5.3	 UML Activity Diagrams  151

8.6	 Summary  154

TABLE OF CONTENTS	 xiii

CHAPTER 9	 DESIGN CONCEPTS  156

9.1	 Design Within the Context of Software Engineering  157

9.2	 The Design Process  159
9.2.1	 Software Quality Guidelines and Attributes  160
9.2.2	 The Evolution of Software Design  161

9.3	 Design Concepts  163
9.3.1	 Abstraction  163
9.3.2	 Architecture  163
9.3.3	 Patterns  164
9.3.4	 Separation of Concerns  165
9.3.5	 Modularity  165
9.3.6	 Information Hiding  166
9.3.7	 Functional Independence  167
9.3.8	 Stepwise Refinement  167
9.3.9	 Refactoring  168
9.3.10	 Design Classes  169

9.4	 The Design Model  171
9.4.1	 Design Modeling Principles  173
9.4.2	 Data Design Elements  174
9.4.3	 Architectural Design Elements  175
9.4.4	 Interface Design Elements  175
9.4.5	 Component-Level Design Elements  176
9.4.6	 Deployment-Level Design Elements  177

9.5	 Summary  178

CHAPTER 10	 ARCHITECTURAL DESIGN—
A RECOMMENDED APPROACH  181

10.1	 Software Architecture  182
10.1.1	 What Is Architecture?  182
10.1.2	 Why Is Architecture Important?  183
10.1.3	 Architectural Descriptions  183
10.1.4	 Architectural Decisions  184

10.2	 Agility and Architecture  185

10.3	 Architectural Styles  186
10.3.1	 A Brief Taxonomy of Architectural Styles  187
10.3.2	 Architectural Patterns  192
10.3.3	 Organization and Refinement  193

xiv	 TABLE OF CONTENTS

10.4	 Architectural Considerations  193

10.5	 Architectural Decisions  195

10.6	 Architectural Design  196
10.6.1	 Representing the System in Context  196
10.6.2	 Defining Archetypes  197
10.6.3	 Refining the Architecture into Components  198
10.6.4	 Describing Instantiations of the System  200

10.7	 Assessing Alternative Architectural Designs  201
10.7.1	 Architectural Reviews  202
10.7.2	 Pattern-Based Architecture Review  203
10.7.3	 Architecture Conformance Checking  204

10.8	 Summary  204

CHAPTER 11	 COMPONENT-LEVEL DESIGN  206

11.1	 What Is a Component?  207
11.1.1	 An Object-Oriented View  207
11.1.2	 The Traditional View  209
11.1.3	 A Process-Related View  211

11.2	 Designing Class-Based Components  212
11.2.1	 Basic Design Principles  212
11.2.2	 Component-Level Design Guidelines  215
11.2.3	 Cohesion  216
11.2.4	 Coupling  218

11.3	 Conducting Component-Level Design  219

11.4	 Specialized Component-Level Design  225
11.4.1	 Component-Level Design for WebApps  226
11.4.2	 Component-Level Design for Mobile Apps  226
11.4.3	 Designing Traditional Components  227
11.4.4	 Component-Based Development  228

11.5	 Component Refactoring  230

11.6	 Summary  231

CHAPTER 12	 USER EXPERIENCE DESIGN  233

12.1	 User Experience Design Elements  234
12.1.1	 Information Architecture  235
12.1.2	 User Interaction Design  236
12.1.3	 Usability Engineering  236
12.1.4	 Visual Design  237

TABLE OF CONTENTS	 xv

12.2	 The Golden Rules  238
12.2.1	 Place the User in Control  238
12.2.2	 Reduce the User’s Memory Load  239
12.2.3	 Make the Interface Consistent  240

12.3	 User Interface Analysis and Design  241
12.3.1	 Interface Analysis and Design Models  241
12.3.2	 The Process  242

12.4	 User Experience Analysis  243
12.4.1	 User Research  244
12.4.2	 User Modeling  245
12.4.3	 Task Analysis  247
12.4.4	 Work Environment Analysis  248

12.5	 User Experience Design  249

12.6	 User Interface Design  250
12.6.1	 Applying Interface Design Steps  251
12.6.2	 User Interface Design Patterns  252

12.7	 Design Evaluation  253
12.7.1	 Prototype Review  253
12.7.2	 User Testing  255

12.8	 Usability and Accessibility  255
12.8.1	 Usability Guidelines  257
12.8.2	 Accessibility Guidelines  259

12.9	 Conventional Software UX and Mobility  261

12.10	 Summary  261

CHAPTER 13	 DESIGN FOR MOBILITY  264

13.1	 The Challenges  265
13.1.1	 Development Considerations  265
13.1.2	 Technical Considerations  266

13.2	 Mobile Development Life Cycle  268
13.2.1	 User Interface Design  270
13.2.2	 Lessons Learned  271

13.3	 Mobile Architectures  273

13.4	 Context-Aware Apps  274

13.5	 Web Design Pyramid  275
13.5.1	 WebApp Interface Design  275
13.5.2	 Aesthetic Design  277
13.5.3	 Content Design  277
13.5.4	 Architecture Design  278
13.5.5	 Navigation Design  280

xvi	 TABLE OF CONTENTS

13.6	 Component-Level Design  282

13.7	 Mobility and Design Quality  282

13.8	 Mobility Design Best Practices  285

13.9	 Summary  287

CHAPTER 14	 PATTERN-BASED DESIGN  289

14.1	 Design Patterns  290
14.1.1	 Kinds of Patterns  291
14.1.2	 Frameworks  293
14.1.3	 Describing a Pattern  293
14.1.4	 Machine Learning and Pattern Discovery  294

14.2	 Pattern-Based Software Design  295
14.2.1	 Pattern-Based Design in Context  295
14.2.2	 Thinking in Patterns  296
14,2.3	 Design Tasks  297
14.2.4	 Building a Pattern-Organizing Table  298
14.2.5	 Common Design Mistakes  298

14.3	 Architectural Patterns  299

14.4	 Component-Level Design Patterns  300

14.5	 Anti-Patterns  302

14.6	 User Interface Design Patterns  304

14.7	 Mobility Design Patterns  305

14.8	 Summary  306

PART THREE	 QUALITY AND SECURITY  309

CHAPTER 15	 QUALITY CONCEPTS  310

15.1	 What Is Quality?  311

15.2	 Software Quality  312
15.2.1	 Quality Factors  312
15.2.2	 Qualitative Quality Assessment  314
15.2.3	 Quantitative Quality Assessment  315

15.3	 The Software Quality Dilemma  315
15.3.1	 “Good Enough” Software  316
15.3.2	 The Cost of Quality  317
15.3.3	 Risks  319
15.3.4	 Negligence and Liability  320

TABLE OF CONTENTS	 xvii

15.3.5	 Quality and Security  320
15.3.6	 The Impact of Management Actions  321

15.4	 Achieving Software Quality  321
15.4.1	 Software Engineering Methods  322
15.4.2	 Project Management Techniques  322
15.4.3	 Machine Learning and Defect Prediction  322
15.4.4	 Quality Control  322
15.4.5	 Quality Assurance  323

15.5	 Summary  323

CHAPTER 16	 REVIEWS—A RECOMMENDED
APPROACH  325

16.1	 Cost Impact of Software Defects  326

16.2	 Defect Amplification and Removal  327

16.3	 Review Metrics and Their Use  327

16.4	 Criteria for Types of Reviews  330

16.5	 Informal Reviews  331

16.6	 Formal Technical Reviews  332
16.6.1	 The Review Meeting  332
16.6.2	 Review Reporting and Record Keeping  333
16.6.3	 Review Guidelines  334

16.7	 Postmortem Evaluations  336

16.8	 Agile Reviews  336

16.9	 Summary  337

CHAPTER 17	 SOFTWARE QUALITY
ASSURANCE  339

17.1	 Background Issues  341

17.2	 Elements of Software Quality Assurance  341

17.3	 SQA Processes and Product Characteristics  343

17.4	 SQA Tasks, Goals, and Metrics  343
17.4.1	 SQA Tasks  343
17.4.2	 Goals, Attributes, and Metrics  345

17.5	 Formal Approaches to SQA  347

17.6	 Statistical Software Quality Assurance  347

xviii	 TABLE OF CONTENTS

17.6.1	 A Generic Example  347
17.6.2	 Six Sigma for Software Engineering  349

17.7	 Software Reliability  350
17.7.1	 Measures of Reliability and Availability  350
17.7.2	 Use of AI to Model Reliability  351
17.7.3	 Software Safety  352

17.8	 The ISO 9000 Quality Standards  353

17.9	 The SQA Plan  354

17.10	 Summary  355

CHAPTER 18	 SOFTWARE SECURITY
ENGINEERING  356

18.1	 Why Software Security Information Is Important  357

18.2	 Security Life-Cycle Models  357

18.3	 Secure Development Life-Cycle Activities  359

18.4	 Security Requirements Engineering  360
18.4.1	 SQUARE  360
18.4.2	 The SQUARE Process  360

18.5	 Misuse and Abuse Cases and Attack Patterns  363

18.6	 Security Risk Analysis  364

18.7	 Threat Modeling, Prioritization, and Mitigation  365

18.8	 Attack Surface  366

18.9	 Secure Coding  367

18.10	 Measurement  368

18.11	 Security Process Improvement and Maturity Models  370

18.12	 Summary  370

CHAPTER 19	 SOFTWARE TESTING—COMPONENT LEVEL  372

19.1	 A Strategic Approach to Software Testing  373
19.1.1	 Verification and Validation  373
19.1.2	 Organizing for Software Testing  374
19.1.3	 The Big Picture  375
19.1.4	 Criteria for “Done”  377

TABLE OF CONTENTS	 xix

19.2	 Planning and Recordkeeping  378
19.2.1	 Role of Scaffolding  379
19.2.2	 Cost-Effective Testing  379

19.3	 Test-Case Design  381
19.3.1	 Requirements and Use Cases  382
19.3.2	 Traceability  383

19.4	 White-Box Testing  383
19.4.1	 Basis Path Testing  384
19.4.2	 Control Structure Testing  386

19.5	 Black-Box Testing  388
19.5.1	 Interface Testing  388
19.5.2	 Equivalence Partitioning  389
19.5.3	 Boundary Value Analysis  389

19.6	 Object-Oriented Testing  390
19.6.1	 Class Testing  390
19.6.2	 Behavioral Testing  392

19.7	 Summary  393

CHAPTER 20	 SOFTWARE TESTING—
INTEGRATION LEVEL  395

20.1	 Software Testing Fundamentals  396
20.1.1	 Black-Box Testing  397
20.1.2	 White-Box Testing  397

20.2	 Integration Testing  398
20.2.1	 Top-Down Integration  398
20.2.2	 Bottom-Up Integration  399
20.2.3	 Continuous Integration  400
20.2.4	 Integration Test Work Products  402

20.3	 Artificial Intelligence and Regression Testing  402

20.4	 Integration Testing in the OO Context  404
20.4.1	 Fault-Based Test-Case Design  405
20.4.2	 Scenario-Based Test-Case Design  406

20.5	 Validation Testing  407

20.6	 Testing Patterns  409

20.7	 Summary  409

xx	 TABLE OF CONTENTS

CHAPTER 21	 SOFTWARE TESTING—SPECIALIZED
TESTING FOR MOBILITY  412

21.1	 Mobile Testing Guidelines  413

21.2	 The Testing Strategies  414

21.3	 User Experience Testing Issues  415
21.3.1	 Gesture Testing  415
21.3.2	 Virtual Keyboard Input  416
21.3.3	 Voice Input and Recognition  416
21.3.4	 Alerts and Extraordinary Conditions  417

21.4	 Web Application Testing  418

21.5	 Web Testing Strategies  418
21.5.1	 Content Testing  420
21.5.2	 Interface Testing  421
21.5.3	 Navigation Testing  421

21.6	 Internationalization  423

21.7	 Security Testing  423

21.8	 Performance Testing  424

21.9	 Real-Time Testing  426

21.10	 Testing AI Systems  428
21.10.1	 Static and Dynamic Testing  429
21.10.2	 Model-Based Testing  429

21.11	 Testing Virtual Environments  430
21.11.1	 Usability Testing  430
21.11.2	 Accessibility Testing  433
21.11.3	 Playability Testing  433

21.12 Testing Documentation and Help Facilities  434

21.13 Summary  435

CHAPTER 22	 SOFTWARE CONFIGURATION
MANAGEMENT  437

22.1	 Software Configuration Management  438
22.1.1	 An SCM Scenario  439
22.1.2	 Elements of a Configuration Management System  440
22.1.3	 Baselines  441

TABLE OF CONTENTS	 xxi

22.1.4	 Software Configuration Items  441
22.1.5	 Management of Dependencies and Changes  442

22.2	 The SCM Repository  443
22.2.1	 General Features and Content  444
22.2.2	 SCM Features  444

22.3	 Version Control Systems  445

22.4	 Continuous Integration  446

22.5	 The Change Management Process  447
22.5.1	 Change Control  448
22.5.2	 Impact Management  451
22.5.3	 Configuration Audit  452
22.5.4	 Status Reporting  452

22.6	 Mobility and Agile Change Management  453
22.6.1	 e-Change Control  453
22.6.2	 Content Management  455
22.6.3	 Integration and Publishing  455
22.6.4	 Version Control  457
22.6.5	 Auditing and Reporting  458

22.7	 Summary  458

CHAPTER 23	 SOFTWARE METRICS
AND ANALYTICS  460

23.1	 Software Measurement  461
23.1.1	 Measures, Metrics, and Indicators  461
23.1.2	 Attributes of Effective Software Metrics  462

23.2	 Software Analytics  462

23.3	 Product Metrics  463
23.3.1	 Metrics for the Requirements Model  464
23.3.2	 Design Metrics for Conventional Software  466
23.3.3	 Design Metrics for Object-Oriented Software  468
23.3.4	 User Interface Design Metrics  471
23.3.5	 Metrics for Source Code  473

23.4	 Metrics for Testing  474

23.5	 Metrics for Maintenance  476

23.6	 Process and Project Metrics  476

xxii	 TABLE OF CONTENTS

23.7	 Software Measurement  479

23.8	 Metrics for Software Quality  482

23.9	 Establishing Software Metrics Programs  485

23.10	 Summary  487

PART FOUR	 MANAGING SOFTWARE PROJECTS  489

CHAPTER 24	 PROJECT MANAGEMENT
CONCEPTS  490

24.1	 The Management Spectrum  491
24.1.1	 The People  491
24.1.2	 The Product  491
24.1.3	 The Process  492
24.1.4	 The Project  492

24.2	 People  493
24.2.1	 The Stakeholders  493
24.2.2	 Team Leaders  493
24.2.3	 The Software Team  494
24.2.4	 Coordination and Communications Issues  496

24.3	 Product  497
24.3.1	 Software Scope  497
24.3.2	 Problem Decomposition  497

24.4	 Process  498
24.4.1	 Melding the Product and the Process  498
24.4.2	 Process Decomposition  498

24.5	 Project  500

24.6	 The W5HH Principle  501

24.7	 Critical Practices  502

24.8	 Summary  502

CHAPTER 25	 CREATING A VIABLE SOFTWARE PLAN  504

25.1	 Comments on Estimation  505

25.2	 The Project Planning Process  506

TABLE OF CONTENTS	 xxiii

25.3	 Software Scope and Feasibility  507

25.4	 Resources  507
25.4.1	 Human Resources  508
25.4.2	 Reusable Software Resources  509
25.4.3	 Environmental Resources  509

25.5	 Data Analytics and Software Project Estimation  509

25.6	 Decomposition and Estimation Techniques  511
25.6.1	 Software Sizing  511
25.6.2	 Problem-Based Estimation  512
25.6.3	 An Example of LOC-Based Estimation  512
25.6.4	 An Example of FP-Based Estimation  514
25.6.5	 An Example of Process-Based Estimation  515
25.6.6	 An Example of Estimation Using Use Case Points  517
25.6.7	 Reconciling Estimates  518
25.6.8	 Estimation for Agile Development  519

25.7	 Project Scheduling  520
25.7.1	 Basic Principles  521
25.7.2	 The Relationship Between People and Effort  522

25.8	 Defining a Project Task Set  523
25.8.1	 A Task Set Example  524
25.8.2	 Refinement of Major Tasks  524

25.9	 Defining a Task Network  525

25.10	 Scheduling  226
25.10.1	 Time-Line Charts  526
25.10.2	 Tracking the Schedule  528

25.11	 Summary  530

CHAPTER 26	 RISK MANAGEMENT  532

26.1	 Reactive Versus Proactive Risk Strategies  533

26.2	 Software Risks  534

26.3	 Risk Identification  535
26.3.1	 Assessing Overall Project Risk  536
26.3.2	 Risk Components and Drivers  537

26.4	 Risk Projection  538

xxiv	 TABLE OF CONTENTS

26.4.1	 Developing a Risk Table  538
26.4.2	 Assessing Risk Impact  540

26.5	 Risk Refinement  542

26.6	 Risk Mitigation, Monitoring, and Management  543

26.7	 The RMMM Plan  546

26.8	 Summary  547

CHAPTER 27	 A STRATEGY FOR SOFTWARE
SUPPORT  549

27.1	 Software Support  550

27.2	 Software Maintenance  552
27.2.1	 Maintenance Types  553
27.2.2	 Maintenance Tasks  554
27.2.3	 Reverse Engineering  555

27.3	 Proactive Software Support  557
27.3.1	 Use of Software Analytics  558
27.3.2	 Role of Social Media  559
27.3.3	 Cost of Support  559

27.4	 Refactoring  560
27.4.1	 Data Refactoring  561
24.4.2	 Code Refactoring  561
27.4.3	 Architecture Refactoring  561

27.5	 Software Evolution  562
27.5.1	 Inventory Analysis  563
27.5.2	 Document Restructuring  564
27.5.3	 Reverse Engineering  564
27.5.4	 Code Refactoring  564
27.7.5	 Data Refactoring  564
27.5.6	 Forward Engineering  565

27.6	 Summary  565

PART FIVE	 ADVANCED TOPICS  567

CHAPTER 28	 SOFTWARE PROCESS IMPROVEMENT  568

28.1	 What Is SPI?  569
28.1.1	 Approaches to SPI  569
28.1.2	 Maturity Models  570
28.1.3	 Is SPI for Everyone?  571

TABLE OF CONTENTS	 xxv

28.2	 The SPI Process  571
28.2.1	 Assessment and GAP Analysis  572
28.2.2	 Education and Training  573
28.2.3	 Selection and Justification  573
28.2.4	 Installation/Migration  574
28.2.5	 Evaluation  575
28.2.6	 Risk Management for SPI  575

28.3	 The CMMI  576

28.4	 Other SPI Frameworks  579
28.4.1	 SPICE  579
28.4.2	 TickIT Plus  579

28.5	 SPI Return on Investment  580

28.6	 SPI Trends  580

28.7	 Summary  581

CHAPTER 29	 EMERGING TRENDS IN SOFTWARE
ENGINEERING  583

29.1	 Technology Evolution  584

29.2	 Software Engineering as a Discipline  585

29.3	 Observing Software Engineering Trends  586

29.4	 Identifying “Soft Trends”  587
29.4.1	 Managing Complexity  588
29.4.2	 Open-World Software  589
29.4.3	 Emergent Requirements  590
29.4.4	 The Talent Mix  591
29.4.5	 Software Building Blocks  591
29.4.6	 Changing Perceptions of “Value”  592
29.4.7	 Open Source  592

29.5	 Technology Directions  593
29.5.1	 Process Trends  593
29.5.2	 The Grand Challenge  594
29.5.3	 Collaborative Development  595
29.5.4	 Requirements Engineering  596
29.5.5	 Model-Driven Software Development  596
29.5.6	 Search-Based Software Engineering  597
29.5.7	 Test-Driven Development  598

29.6	 Tools-Related Trends  599

29.7	 Summary  600

xxvi	 TABLE OF CONTENTS

CHAPTER 30	 CONCLUDING COMMENTS  602

30.1	 The Importance of Software—Revisited  603

30.2	 People and the Way They Build Systems  603

30.3	 Knowledge Discovery  605

30.4	 The Long View  606

30.5	 The Software Engineer’s Responsibility  607

30.6	 A Final Comment from RSP  609

APPENDIX 1	 An Introduction to UML  611

APPENDIX 2	 Data Science for Software Engineers  629

REFERENCES  639

INDEX  659

xxvii

When computer software succeeds—when it meets the needs of the people who use it,
when it performs flawlessly over a long period of time, when it is easy to modify and
even easier to use—it can and does change things for the better. But when software fails—
when its users are dissatisfied, when it is error prone, when it is difficult to change and
even harder to use—bad things can and do happen. We all want to build software that
makes things better, avoiding the bad things that lurk in the shadow of failed efforts. To
succeed, we need discipline when software is designed and built. We need an engineering
approach.
	 It has been nearly four decades since the first edition of this book was written. Dur-
ing that time, software engineering has evolved from an obscure idea practiced by a
relatively small number of zealots to a legitimate engineering discipline. Today, it is
recognized as a subject worthy of serious research, conscientious study, and tumultuous
debate. Throughout the industry, software engineer has replaced programmer or coder
as the job title of preference. Software process models, software engineering methods,
and software tools have been adopted successfully across a broad spectrum of industry
segments.
	 Although managers and practitioners alike recognize the need for a more disciplined
approach to software, they continue to debate the manner in which discipline is to be
applied. Many individuals and companies still develop software haphazardly, even as they
build systems to service today’s most advanced technologies. Many professionals and
students are unaware of modern methods. And as a result, the quality of the software that
we produce suffers, and bad things happen. In addition, debate, and controversy about the
true nature of the software engineering approach continue. The status of software engineer-
ing is a study in contrasts. Attitudes have changed, progress has been made, but much
remains to be done before the discipline reaches full maturity.

Ne w to t h e Ni n t h Ed i t i o n

The ninth edition of Software Engineering: A Practitioner’s Approach is intended to serve
as a guide to a maturing engineering discipline. The ninth edition, like the eight editions
that preceded it, is intended for both students and practitioners, retaining its appeal as a
guide for the industry professional and a comprehensive introduction to the student at the
upper-level undergraduate or first-year graduate level.

Preface

xxviii	 PREFACE

	 The ninth edition is considerably more than a simple update. The book has been revised
and restructured to improve pedagogical flow and emphasize new and important software
engineering processes and practices. In addition, we have further enhanced the popular
“support system” for the book, providing a comprehensive set of student, instructor, and
professional resources to complement the content of the book.
	 Readers of the past few editions of Software Engineering: A Practitioner’s Approach
will note that the ninth edition has actually been reduced in page length. Our goal was
concision, making the book stronger from a pedagogical viewpoint and less daunting for
the reader who desires to journey through the entire book. An anecdote, attributed to Blaise
Pascal, the famous mathematician and physicist, goes like this: In writing a overly long
letter to a friend, Pascal ended with this sentence. “I wanted to write you a shorter letter,
but I didn’t have the time.” As we worked on concision for the ninth edition, we came to
appreciate Pascal’s words.
	 The 30 chapters of the ninth edition are organized into five parts. This organization
better compartmentalizes topics and assists instructors who may not have the time to
complete the entire book in one term.
	 Part 1, The Software Process, presents a variety of different views of software
process, considering several important process models and frameworks that allow us
to address the debate between prescriptive and agile process philosophies. Part 2,
Modeling, presents analysis and design methods with an emphasis on object-oriented
techniques and UML modeling. Pattern-based design and design for mobility comput-
ing applications are also considered. The coverage of user experience design has been
expanded in this section. Part 3, Quality and Security, presents the concepts, proce-
dures, techniques, and methods that enable a software team to assess software quality,
review software engineering work products, conduct SQA procedures, and apply an
effective testing strategy and tactics. In addition, we present software security practices
that can be inserted into incremental software development models. Part 4, Managing
Software Projects, presents topics that are relevant to those who plan, manage, and
control a software development project. Part 5, Advanced Topics, considers software
process improvement and software engineering trends. Boxed features are included
throughout the book to present the trials and tribulations of a (fictional) software team
and to provide supplementary materials about methods and tools that are relevant to
chapter topics.
	 The five-part organization of the ninth edition enables an instructor to “cluster” top-
ics based on available time and student need. An entire one-term course can be built
around one or more of the five parts. A software engineering survey course would select
chapters from all five parts. A software engineering course that emphasizes analysis and
design would select topics from Parts 1 and 2. A testing-oriented software engineering
course would select topics from Parts 1 and 3, with a brief foray into Part 2. A “man-
agement course” would stress Parts 1 and 4. By organizing the ninth edition in this way,

PREFACE	 xxix

we have attempted to provide an instructor with a number of teaching options. In every
case the content of the ninth edition is complemented by the following elements of the
SEPA, 9/e Support System.

Additional Resources
A wide variety of resources can be accessed through the instructor website, including an
extensive online learning center encompassing problem solutions, a variety of Web-based
resources with software engineering checklists, an evolving collection of “tiny tools,”
and comprehensive case studies. Professional Resources provide several hundred
categorized web references which allow students to explore software engineering in greater
detail, along with a reference library with links to several hundred downloadable references
providing an in-depth source of advanced software engineering information. Additionally,
a complete online Instructor’s Guide and supplementary teaching materials along with
several hundred PowerPoint slides that may be used for lectures are included.
	 The Instructor’s Guide for Software Engineering: A Practitioner’s Approach presents
suggestions for conducting various types of software engineering courses, recommenda-
tions for a variety of software projects to be conducted in conjunction with a course,
solutions to selected problems, and a number of useful teaching aids.
	 When coupled with its online support system, the ninth edition of Software Engineering:
A Practitioner’s Approach provides flexibility and depth of content that cannot be achieved
by a textbook alone.
	 Bruce Maxim has taken the lead in developing new content for the ninth edition of
Software Engineering: A Practitioner’s Approach, while Roger Pressman has served as
editor-in-chief as well as providing contributions in select circumstances.

Acknowledgments  Special thanks go to Nancy Mead from Software Engineering Institute
at Carnegie Mellon University who wrote the chapter on software security engineering;
Tim Lethbridge of the University of Ottawa who assisted us in the development of UML
and OCL examples and developed the case study that accompanies this book; Dale Skrien
of Colby College who developed the UML tutorial in Appendix 1; William Grosky of
the University of Michigan–Dearborn who developed the overview of data science in
Appendix 2 with his student Terry Ruas; and our Australian colleague Margaret Kellow for
updating the pedagogical Web materials that accompany this book. In addition, we would
like to thank Austin Krauss for providing insight into software development in the video
game industry from his perspective as a senior software engineer.

Special Thanks  BRM: I am grateful to have had the opportunity to work with Roger
on the ninth edition of this book. During the time I have been working on this book, my
son, Benjamin, has become a software engineering manager and my daughter, Katherine,
used her art background to create the figures that appear in the book chapters. I am quite
pleased to see the adults they have become and enjoy my time with their children

(Isla, Emma, and Thelma). I am very grateful to my wife, Norma, for her enthusiastic
support as I filled my free time working on this book.
	 RSP: As the editions of this book have evolved, my sons, Mathew and Michael, have
grown from boys to men. Their maturity, character, and success in the real world have
been an inspiration to me. After many years of following our own professional paths, the
three of us now work together in a business that we founded in 2012. Nothing has filled
me with more pride. Both of my sons now have children of their own, Maya and Lily,
who start still another generation. Finally, to my wife, Barbara, my love and thanks for
tolerating the many, many hours in the office and encouraging still another edition of
“the book.”

Bruce R. Maxim

Roger S. Pressman

xxx	 PREFACE

Design element: Quick Look icon magnifying glass: © Roger Pressman

Affordability & Outcomes = Academic Freedom!
You deserve choice, flexibility and control. You know what’s best for your students

and selecting the course materials that will help them succeed should be in your hands.

That’s why providing you with a wide range of options
that lower costs and drive better outcomes is our highest priority.

They’ll thank you for it.
Study resources in Connect help your students be
better prepared in less time. You can transform your
class time from dull definitions to dynamic discussion.
Hear from your peers about the benefits of Connect at
www.mheducation.com/highered/connect/smartbook

Students—study more efficiently, retain more
and achieve better outcomes. Instructors—
focus on what you love—teaching.

Rent It
Affordable print and digital rental
options through our partnerships
with leading textbook distributors
including Amazon, Barnes &
Noble, Chegg, Follett, and more.

Go Digital
A full and flexible range of
affordable digital solutions
ranging from Connect, ALEKS,
inclusive access, mobile apps,
OER and more.

Get Print
Students who purchase digital
materials can get a loose-leaf print
version at a significantly reduced
rate to meet their individual
preferences and budget.

Learn more at: www.mheducation.com/realvalue

Make it simple, make it affordable.
Connect makes it easy with seamless integration using
any of the major Learning Management Systems—
Blackboard®, Canvas, and D2L, among others—to let
you organize your course in one convenient location.
Give your students access to digital materials at a
discount with our inclusive access program. Ask your
McGraw-Hill representative for more information.

Learning for everyone.
McGraw-Hill works directly with Accessibility Services
Departments and faculty to meet the learning needs of all
students. Please contact your Accessibility Services office
and ask them to email accessibility@mheducation.com, or
visit www.mheducation.com/about/accessibility.html for
more information.

Laptop: McGraw-Hill Education

1

What is it?  Computer software is a work prod-
uct that software professionals build and then
support over many years. These work prod-
ucts include programs that execute within
computers of any size and architecture. Soft-
ware engineering encompasses a process, a
collection of methods (practice), and an array
of tools that allow professionals to build high-
quality computer software.

Who does it?  Software engineers build and
support software, and virtually everyone in
the industrialized world uses it. Software
engineers apply the software engineering
process.

Why is it important?  Software engineering is
important because it enables us to build com-
plex systems in a timely manner and with high
quality. It imposes discipline to work that can
become quite chaotic, but it also allows the

people who build computer software to adapt
their approach in a manner that best suits their
needs.

What are the steps?  You build computer soft-
ware like you build any successful product, by
applying an agile, adaptable process that
leads to a high-quality result that meets the
needs of the people who will use the product.

What is the work product?  From the software
engineer’s point of view, the work product is
the set of programs, content (data), and other
work products that support computer soft-
ware. But from the user’s point of view, the
work product is a tool or product that some-
how makes the user’s world better.

How do I ensure that I’ve done it right?  Read
the remainder of this book, select those ideas
that are applicable to the software that you
build, and apply them to your work.

Q u i c k L o o k

C H A P T E R

1
As he finished showing me the latest build of one of the world’s most popular
first-person shooter video games, the young developer laughed.

“You’re not a gamer, are you?” he asked.
I smiled. “How’d you guess?”
The young man was dressed in shorts and a tee shirt. His leg bounced up and

down like a piston, burning the nervous energy that seemed to be commonplace
among his co-workers.

Software and Software
Engineering

application domains . . 7
failure curves . 5
framework activities . . 10
general principles . 14
legacy software . 8
principles . 14
problem solving . 12
SafeHome . 16
software,

definition . 5
nature of . 4

process . 9
questions about . 4

software engineering,
definition . 3
layers . 9
practice . 12

umbrella activities . 11
wear . 5

K e y
C o n c e p t s

2	 CHAPTER 1  SOFTWARE AND SOFTWARE ENGINEERING

“Because if you were,” he said, “you’d be a lot more excited. You’ve gotten a peek
at our next generation product and that’s something that our customers would kill
for . . . no pun intended.”

We sat in a development area at one of the most successful game developers on
the planet. Over the years, earlier generations of the game he demoed sold over
50 million copies and generated billions of dollars in revenue.

“So, when will this version be on the market?” I asked.
He shrugged. “In about five months, and we’ve still got a lot of work to do.”
He had responsibility for game play and artificial intelligence functionality in an

application that encompassed more than three million lines of code.
“Do you guys use any software engineering techniques?” I asked, half-expecting

that he’d laugh and shake his head.
He paused and thought for a moment. Then he slowly nodded. “We adapt them to

our needs, but sure, we use them.”
“Where?” I asked, probing.
“Our problem is often translating the requirements the creatives give us.”
“The creatives?” I interrupted.
“You know, the guys who design the story, the characters, all the stuff that make

the game a hit. We have to take what they give us and produce a set of technical
requirements that allow us to build the game.”

“And after the requirements are established?”
He shrugged. “We have to extend and adapt the architecture of the previous version

of the game and create a new product. We have to create code from the requirements,
test the code with daily builds, and do lots of things that your book recommends.”

“You know my book?” I was honestly surprised.
“Sure, used it in school. There’s a lot there.”
“I’ve talked to some of your buddies here, and they’re more skeptical about the

stuff in my book.”
He frowned. “Look, we’re not an IT department or an aerospace company, so we

have to customize what you advocate. But the bottom line is the same—we need to
produce a high-quality product, and the only way we can accomplish that in a repeat-
able fashion is to adapt our own subset of software engineering techniques.”

“And how will your subset change as the years pass?”
He paused as if to ponder the future. “Games will become bigger and more com-

plex, that’s for sure. And our development timelines will shrink as more competition
emerges. Slowly, the games themselves will force us to apply a bit more development
discipline. If we don’t, we’re dead.”

Computer software continues to be the single most important technology on the world
stage. And it’s also a prime example of the law of unintended consequences. Sixty
years ago no one could have predicted that software would become an indispensable
technology for business, science, and engineering; that software would enable the
creation of new technologies (e.g., genetic engineering and nanotechnology), the
extension of existing technologies (e.g., telecommunications), and the radical change
in older technologies (e.g., the media); that software would be the driving force behind
the personal computer revolution; that software applications would be purchased by

CHAPTER 1  SOFTWARE AND SOFTWARE ENGINEERING 	 3

consumers using their mobile devices; that software would slowly evolve from a prod-
uct to a service as “on-demand” software companies deliver just-in-time functionality
via a Web browser; that a software company would become larger and more influen-
tial than all industrial-era companies; or that a vast software-driven network would
evolve and change everything from library research to consumer shopping to political
discourse to the dating habits of young (and not so young) adults.

As software’s importance has grown, the software community has continually
attempted to develop technologies that will make it easier, faster, and less expensive
to build and support high-quality computer programs. Some of these technologies are
targeted at a specific application domain (e.g., website design and implementation);
others focus on a technology domain (e.g., object-oriented systems or aspect-oriented
programming); and still others are broad based (e.g., operating systems such as Linux).
However, we have yet to develop a software technology that does it all, and the likeli
hood of one arising in the future is small. And yet, people bet their jobs, their com-
forts, their safety, their entertainment, their decisions, and their very lives on computer
software. It better be right.

This book presents a framework that can be used by those who build computer
software—people who must get it right. The framework encompasses a process, a set
of methods, and an array of tools that we call software engineering.

To build software that is ready to meet the challenges of the twenty-first century,
you must recognize a few simple realities:

∙	 Software has become deeply embedded in virtually every aspect of our lives. The
number of people who have an interest in the features and functions provided by
a specific application1 has grown dramatically. A concerted effort should be made
to understand the problem before a software solution is developed.

∙	 The information technology requirements demanded by individuals, businesses,
and governments grow increasingly complex with each passing year. Large
teams of people now create computer programs. Sophisticated software that
was once implemented in a predictable, self-contained computing environment
is now embedded inside everything from consumer electronics to medical
devices to autonomous vehicles. Design has become a pivotal activity.

∙	 Individuals, businesses, and governments increasingly rely on software for
strategic and tactical decision making as well as day-to-day operations and
control. If the software fails, people and major enterprises can experience
anything from minor inconvenience to catastrophic consequences. Software
should exhibit high quality.

∙	 As the perceived value of a specific application grows, the likelihood is that
its user base and longevity will also grow. As its user base and time in use
increase, demands for adaptation and enhancement will also grow. Software
should be maintainable.

These simple realities lead to one conclusion: Software in all its forms and across
all its application domains should be engineered. And that leads us to the topic of
this book—software engineering.

1	 We will call these people “stakeholders” later in this book.

4	 CHAPTER 1  SOFTWARE AND SOFTWARE ENGINEERING

	 1 .1 	T h e Nat u r e o f So f t wa r e

Today, software takes on a dual role. It is a product, and the vehicle for delivering a
product. As a product, it delivers the computing potential embodied by computer
hardware or, more broadly, by a network of computers that are accessible by local
hardware. Whether it resides within a mobile device, on the desktop, in the cloud, or
within a mainframe computer or autonomous machine, software is an information
transformer—producing, managing, acquiring, modifying, displaying, or transmitting
information that can be as simple as a single bit or as complex as an augmented-
reality representation derived from data acquired from dozens of independent sources
and then overlaid on the real world. As the vehicle used to deliver a product, software
acts as the basis for the control of the computer (operating systems), the communica-
tion of information (networks), and the creation and control of other programs (soft-
ware tools and environments).

Software delivers the most important product of our time—information. It trans-
forms personal data (e.g., an individual’s financial transactions) so that the data can
be more useful in a local context; it manages business information to enhance com-
petitiveness; it provides a gateway to worldwide information networks (e.g., the Inter-
net); and provides the means for acquiring information in all its forms. It also provides
a vehicle that can threaten personal privacy and a gateway that enables those with
malicious intent to commit criminal acts.

The role of computer software has undergone significant change over the last
60 years. Dramatic improvements in hardware performance, profound changes in com-
puting architectures, vast increases in memory and storage capacity, and a wide vari-
ety of exotic input and output options have all precipitated more sophisticated and
complex computer-based systems. Sophistication and complexity can produce dazzling
results when a system succeeds, but they can also pose huge problems for those who
must build and protect complex systems.

Today, a huge software industry has become a dominant factor in the economies of
the industrialized world. Teams of software specialists, each focusing on one part of the
technology required to deliver a complex application, have replaced the lone program-
mer of an earlier era. And yet, the questions that were asked of the lone programmer
are the same questions that are asked when modern computer-based systems are built:2

∙	 Why does it take so long to get software finished?
∙	 Why are development costs so high?
∙	 Why can’t we find all errors before we give the software to our customers?
∙	 Why do we spend so much time and effort maintaining existing programs?
∙	 Why do we continue to have difficulty in measuring progress as software is

being developed and maintained?

2	 In an excellent book of essays on the software business, Tom DeMarco [DeM95] argues the
counterpoint. He states: “Instead of asking why software costs so much, we need to begin
asking ‘What have we done to make it possible for today’s software to cost so little?’ The
answer to that question will help us continue the extraordinary level of achievement that has
always distinguished the software industry.”

CHAPTER 1  SOFTWARE AND SOFTWARE ENGINEERING 	 5

These, and many other questions, are a manifestation of the concern about software
and how it is developed—a concern that has led to the adoption of software engineer-
ing practice.

1.1.1  Defining Software
Today, most professionals and many members of the public at large feel that they
understand software. But do they?

A textbook description of software might take the following form:

Software is: (1) instructions (computer programs) that when executed provide desired
features, function, and performance; (2) data structures that enable the programs to ade-
quately manipulate information; and (3) descriptive information in both hard copy and
virtual forms that describes the operation and use of the programs.

There is no question that other more complete definitions could be offered. But a
more formal definition probably won’t measurably improve your understanding. To
accomplish that, it’s important to examine the characteristics of software that make it
different from other things that human beings build. Software is a logical rather than
a physical system element. Therefore, software has one fundamental characteristic that
makes it considerably different from hardware: Software doesn’t “wear out.”

Figure 1.1 depicts failure rate as a function of time for hardware. The relationship,
often called the “bathtub curve,” indicates that hardware exhibits relatively high fail-
ure rates early in its life (these failures are often attributable to design or manufactur-
ing defects); defects are corrected, and the failure rate drops to a steady-state level
(hopefully, quite low) for some period of time. As time passes, however, the failure
rate rises again as hardware components suffer from the cumulative effects of dust,

Figure 1.1

"Wear out"

Time

Fa
ilu

re
 ra

te

"Infant mortality"

Failure curve
for hardware

6	 CHAPTER 1  SOFTWARE AND SOFTWARE ENGINEERING

vibration, abuse, temperature extremes, and many other environmental maladies.
Stated simply, the hardware begins to wear out.

Software is not susceptible to the environmental maladies that cause hardware to
wear out. In theory, therefore, the failure rate curve for software should take the form
of the “idealized curve” shown in Figure 1.2. Undiscovered defects will cause high
failure rates early in the life of a program. However, these are corrected and the curve
flattens as shown. The idealized curve is a gross oversimplification of actual failure
models for software. However, the implication is clear—software doesn’t wear out.
But it does deteriorate!

This seeming contradiction can best be explained by considering the actual curve
in Figure 1.2. During its life,3 software will undergo change. As changes are made, it
is likely that errors will be introduced, causing the failure rate curve to spike as shown
in the “actual curve” (Figure 1.2). Before the curve can return to the original steady-
state failure rate, another change is requested, causing the curve to spike again. Slowly,
the minimum failure rate level begins to rise—the software is deteriorating due to
change.

Another aspect of wear illustrates the difference between hardware and software.
When a hardware component wears out, it is replaced by a spare part. There are no
software spare parts. Every software failure indicates an error in design or in the
process through which design was translated into machine executable code. Therefore,
the software maintenance tasks that accommodate requests for change involve consid-
erably more complexity than hardware maintenance.

Figure 1.2

Increased failure rate
due to side e�ects

Actual curve

Idealized curve

Time

Fa
ilu

re
 ra

te

Change

3	 In fact, from the moment that development begins and long before the first version is deliv-
ered, changes may be requested by a variety of different stakeholders.

Failure curves
for software

CHAPTER 1  SOFTWARE AND SOFTWARE ENGINEERING 	 7

1.1.2  Software Application Domains
Today, seven broad categories of computer software present continuing challenges for
software engineers:

System software. A collection of programs written to service other programs.
Some system software (e.g., compilers, editors, and file management utilities) pro-
cesses complex, but determinate,4 information structures. Other systems applications
(e.g., operating system components, drivers, networking software, telecommuni
cations processors) process largely indeterminate data.

Application software. Stand-alone programs that solve a specific business need.
Applications in this area process business or technical data in a way that facilitates
business operations or management/technical decision making.

Engineering/scientific software. A broad array of “number-crunching” or data
science programs that range from astronomy to volcanology, from automotive stress
analysis to orbital dynamics, from computer-aided design to consumer spending
habits, and from genetic analysis to meteorology.

Embedded software. Resides within a product or system and is used to implement
and control features and functions for the end user and for the system itself. Embedded
software can perform limited and esoteric functions (e.g., key pad control for a micro-
wave oven) or provide significant function and control capability (e.g., digital functions
in an automobile such as fuel control, dashboard displays, and braking systems).

Product-line software. Composed of reusable components and designed to
provide specific capabilities for use by many different customers. It may focus
on a limited and esoteric marketplace (e.g., inventory control products) or attempt
to address the mass consumer market.

Web/mobile applications. This network-centric software category spans a wide
array of applications and encompasses browser-based apps, cloud computing,
service-based computing, and software that resides on mobile devices.

Artificial intelligence software. Makes use of heuristics5 to solve complex prob-
lems that are not amenable to regular computation or straightforward analysis.
Applications within this area include robotics, decision-making systems, pattern rec-
ognition (image and voice), machine learning, theorem proving, and game playing.

Millions of software engineers worldwide are hard at work on software projects in
one or more of these categories. In some cases, new systems are being built, but in
many others, existing applications are being corrected, adapted, and enhanced. It is
not uncommon for a young software engineer to work on a program that is older than
she is! Past generations of software people have left a legacy in each of the categories
we have discussed. Hopefully, the legacy to be left behind by this generation will ease
the burden on future software engineers.

4	 Software is determinate if the order and timing of inputs, processing, and outputs is predict-
able. Software is indeterminate if the order and timing of inputs, processing, and outputs
cannot be predicted in advance.

5	 The use of heuristics is an approach to problem solving that employs a practical method or
“rule of thumb” not guaranteed to be perfect, but sufficient for the task at hand.

8	 CHAPTER 1  SOFTWARE AND SOFTWARE ENGINEERING

1.1.3  Legacy Software
Hundreds of thousands of computer programs fall into one of the seven broad appli-
cation domains discussed in the preceding subsection. Some of these are state-of-the-
art software. But other programs are older, in some cases much older.

These older programs—often referred to as legacy software—have been the focus
of continuous attention and concern since the 1960s. Dayani-Fard and his colleagues
[Day99] describe legacy software in the following way:

Legacy software systems . . . were developed decades ago and have been continually
modified to meet changes in business requirements and computing platforms. The pro-
liferation of such systems is causing headaches for large organizations who find them
costly to maintain and risky to evolve.

These changes may create an additional side effect that is often present in legacy
software—poor quality.6 Legacy systems sometimes have inextensible designs, convoluted
code, poor or nonexistent documentation, test cases and results that were never archived,
and a poorly managed change history. The list can be quite long. And yet, these systems
often support “core functions and are indispensable to the business.” What to do?

The only reasonable answer may be: Do nothing, at least until the legacy system
must undergo some significant change. If the legacy software meets the needs of its
users and runs reliably, it isn’t broken and does not need to be fixed. However, as
time passes, legacy systems often evolve for one or more of the following reasons:

∙	 The software must be adapted to meet the needs of new computing environ-
ments or technology.

∙	 The software must be enhanced to implement new business requirements.
∙	 The software must be extended to make it work with other more modern

systems or databases.
∙	 The software must be re-architected to make it viable within an evolving

computing environment.

When these modes of evolution occur, a legacy system must be reengineered so
that it remains viable in the future. The goal of modern software engineering is to
“devise methodologies that are founded on the notion of evolution; that is, the notion
that software systems change continually, new software systems can be built from the
old ones, and . . . all must interact and cooperate with each other” [Day99].

	 1 .2 	 De f i n i ng t h e Di s c i p l i n e

The IEEE [IEE17] has developed the following definition for software engineering:

Software Engineering: The application of a systematic, disciplined, quantifiable approach
to the development, operation, and maintenance of software; that is, the application of
engineering to software.

6	 In this case, quality is judged based on modern software engineering thinking—a somewhat
unfair criterion since some modern software engineering concepts and principles may not
have been well understood at the time that the legacy software was developed.

CHAPTER 1  SOFTWARE AND SOFTWARE ENGINEERING 	 9

And yet, a “systematic, disciplined, and quantifiable” approach applied by one
software team may be burdensome to another. We need discipline, but we also need
adaptability and agility.

Software engineering is a layered technology. Referring to Figure 1.3, any engi-
neering approach (including software engineering) must rest on an organizational
commitment to quality. You may have heard of total quality management (TQM) or
Six Sigma, and similar philosophies7 that foster a culture of continuous process
improvement. It is this culture that ultimately leads to more effective approaches to
software engineering. The bedrock that supports software engineering is a quality
focus.

The foundation for software engineering is the process layer. The software engi-
neering process is the glue that holds the technology layers together and enables
rational and timely development of computer software. Process defines a framework
that must be established for effective delivery of software engineering technology. The
software process forms the basis for management control of software projects and
establishes the context in which technical methods are applied, work products (mod-
els, documents, data, reports, forms, etc.) are produced, milestones are established,
quality is ensured, and change is properly managed.

Software engineering methods provide the technical how-to’s for building software.
Methods encompass a broad array of tasks that include communication, requirements
analysis, design modeling, program construction, testing, and support. Software engi-
neering methods rely on a set of basic principles that govern each area of the technol-
ogy and include modeling activities and other descriptive techniques.

Software engineering tools provide automated or semi-automated support for the
process and the methods. When tools are integrated so that information created by
one tool can be used by another, a system for the support of software development,
called computer-aided software engineering, is established.

	 1 .3 	T h e So f t wa r e Pro c e s s

A process is a collection of activities, actions, and tasks that are performed when
some work product is to be created. An activity strives to achieve a broad objective
(e.g., communication with stakeholders) and is applied regardless of the application
domain, size of the project, complexity of the effort, or degree of rigor with which

7	 Quality management and related approaches are discussed throughout Part Three of this book.

Figure 1.3

Tools

Methods

Process

A quality focus

Software
engineering
layers

