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When computer software succeeds—when it meets the needs of the people who use it, 
when it performs flawlessly over a long period of time, when it is easy to modify and 
even easier to use—it can and does change things for the better. But when software fails—
when its users are dissatisfied, when it is error prone, when it is difficult to change and 
even harder to use—bad things can and do happen. We all want to build software that 
makes things better, avoiding the bad things that lurk in the shadow of failed efforts. To 
succeed, we need discipline when software is designed and built. We need an engineering 
approach.
	 It has been nearly four decades since the first edition of this book was written. Dur-
ing that time, software engineering has evolved from an obscure idea practiced by a 
relatively small number of zealots to a legitimate engineering discipline. Today, it is 
recognized as a subject worthy of serious research, conscientious study, and tumultuous 
debate. Throughout the industry, software engineer has replaced programmer or coder 
as the job title of preference. Software process models, software engineering methods, 
and software tools have been adopted successfully across a broad spectrum of industry 
segments.
	 Although managers and practitioners alike recognize the need for a more disciplined 
approach to software, they continue to debate the manner in which discipline is to be 
applied. Many individuals and companies still develop software haphazardly, even as they 
build systems to service today’s most advanced technologies. Many professionals and 
students are unaware of modern methods. And as a result, the quality of the software that 
we produce suffers, and bad things happen. In addition, debate, and controversy about the 
true nature of the software engineering approach continue. The status of software engineer-
ing is a study in contrasts. Attitudes have changed, progress has been made, but much 
remains to be done before the discipline reaches full maturity.

Ne w to t h e Ni n t h Ed i t i o n

The ninth edition of Software Engineering: A Practitioner’s Approach is intended to serve 
as a guide to a maturing engineering discipline. The ninth edition, like the eight editions 
that preceded it, is intended for both students and practitioners, retaining its appeal as a 
guide for the industry professional and a comprehensive introduction to the student at the 
upper-level undergraduate or first-year graduate level.

Preface
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	 The ninth edition is considerably more than a simple update. The book has been revised 
and restructured to improve pedagogical flow and emphasize new and important software 
engineering processes and practices. In addition, we have further enhanced the popular 
“support system” for the book, providing a comprehensive set of student, instructor, and 
professional resources to complement the content of the book.
	 Readers of the past few editions of Software Engineering: A Practitioner’s Approach 
will note that the ninth edition has actually been reduced in page length. Our goal was 
concision, making the book stronger from a pedagogical viewpoint and less daunting for 
the reader who desires to journey through the entire book. An anecdote, attributed to Blaise 
Pascal, the famous mathematician and physicist, goes like this: In writing a overly long 
letter to a friend, Pascal ended with this sentence. “I wanted to write you a shorter letter, 
but I didn’t have the time.” As we worked on concision for the ninth edition, we came to 
appreciate Pascal’s words.
	 The 30 chapters of the ninth edition are organized into five parts. This organization 
better compartmentalizes topics and assists instructors who may not have the time to 
complete the entire book in one term.
	 Part 1, The Software Process, presents a variety of different views of software 
process, considering several important process models and frameworks that allow us 
to address the debate between prescriptive and agile process philosophies. Part 2, 
Modeling, presents analysis and design methods with an emphasis on object-oriented 
techniques and UML modeling. Pattern-based design and design for mobility comput-
ing applications are also considered. The coverage of user experience design has been 
expanded in this section. Part 3, Quality and Security, presents the concepts, proce-
dures, techniques, and methods that enable a software team to assess software quality, 
review software engineering work products, conduct SQA procedures, and apply an 
effective testing strategy and tactics. In addition, we present software security practices 
that can be inserted into incremental software development models. Part 4, Managing 
Software Projects, presents topics that are relevant to those who plan, manage, and 
control a software development project. Part 5, Advanced Topics, considers software 
process improvement and software engineering trends. Boxed features are included 
throughout the book to present the trials and tribulations of a (fictional) software team 
and to provide supplementary materials about methods and tools that are relevant to 
chapter topics.
	 The five-part organization of the ninth edition enables an instructor to “cluster” top-
ics based on available time and student need. An entire one-term course can be built 
around one or more of the five parts. A software engineering survey course would select 
chapters from all five parts. A software engineering course that emphasizes analysis and 
design would select topics from Parts 1 and 2. A testing-oriented software engineering 
course would select topics from Parts 1 and 3, with a brief foray into Part 2. A “man-
agement course” would stress Parts 1 and 4. By organizing the ninth edition in this way, 
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we have attempted to provide an instructor with a number of teaching options. In every 
case the content of the ninth edition is complemented by the following elements of the 
SEPA, 9/e Support System.

Additional Resources
A wide variety of resources can be accessed through the instructor website, including an 
extensive online learning center encompassing problem solutions, a variety of Web-based 
resources with software engineering checklists, an evolving collection of “tiny tools,” 
and comprehensive case studies. Professional Resources provide several hundred 
categorized web references which allow students to explore software engineering in greater 
detail, along with a reference library with links to several hundred downloadable references 
providing an in-depth source of advanced software engineering information. Additionally, 
a complete online Instructor’s Guide and supplementary teaching materials along with 
several hundred PowerPoint slides that may be used for lectures are included.
	 The Instructor’s Guide for Software Engineering: A Practitioner’s Approach presents 
suggestions for conducting various types of software engineering courses, recommenda-
tions for a variety of software projects to be conducted in conjunction with a course, 
solutions to selected problems, and a number of useful teaching aids.
	 When coupled with its online support system, the ninth edition of Software Engineering: 
A Practitioner’s Approach provides flexibility and depth of content that cannot be achieved 
by a textbook alone.
	 Bruce Maxim has taken the lead in developing new content for the ninth edition of 
Software Engineering: A Practitioner’s Approach, while Roger Pressman has served as 
editor-in-chief as well as providing contributions in select circumstances.

Acknowledgments  Special thanks go to Nancy Mead from Software Engineering Institute 
at Carnegie Mellon University who wrote the chapter on software security engineering; 
Tim Lethbridge of the University of Ottawa who assisted us in the development of UML 
and OCL examples and developed the case study that accompanies this book; Dale Skrien 
of Colby College who developed the UML tutorial in Appendix 1; William Grosky of 
the University of Michigan–Dearborn who developed the overview of data science in 
Appendix 2 with his student Terry Ruas; and our Australian colleague Margaret Kellow for 
updating the pedagogical Web materials that accompany this book. In addition, we would 
like to thank Austin Krauss for providing insight into software development in the video 
game industry from his perspective as a senior software engineer.
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What is it?  Computer software is a work prod-
uct that software professionals build and then 
support over many years. These work prod-
ucts include programs that execute within 
computers of any size and architecture. Soft-
ware engineering encompasses a process, a 
collection of methods (practice), and an array 
of tools that allow professionals to build high-
quality computer software.

Who does it?  Software engineers build and 
support software, and virtually everyone in  
the industrialized world uses it. Software 
engineers apply the software engineering 
process.

Why is it important?  Software engineering is 
important because it enables us to build com-
plex systems in a timely manner and with high 
quality. It imposes discipline to work that can 
become quite chaotic, but it also allows the 

people who build computer software to adapt 
their approach in a manner that best suits their 
needs.

What are the steps?  You build computer soft-
ware like you build any successful product, by 
applying an agile, adaptable process that 
leads to a high-quality result that meets the 
needs of the people who will use the product.

What is the work product?  From the software 
engineer’s point of view, the work product is 
the set of programs, content (data), and other 
work products that support computer soft-
ware. But from the user’s point of view, the 
work product is a tool or product that some-
how makes the user’s world better.

How do I ensure that I’ve done it right?  Read 
the remainder of this book, select those ideas 
that are applicable to the software that you 
build, and apply them to your work.

Q u i c k  L o o k

C H A P T E R

1
As he finished showing me the latest build of one of the world’s most popular 
first-person shooter video games, the young developer laughed.

“You’re not a gamer, are you?” he asked.
I smiled. “How’d you guess?”
The young man was dressed in shorts and a tee shirt. His leg bounced up and 

down like a piston, burning the nervous energy that seemed to be commonplace 
among his co-workers.

Software and Software 
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“Because if you were,” he said, “you’d be a lot more excited. You’ve gotten a peek 
at our next generation product and that’s something that our customers would kill 
for  .  .  . no pun intended.”

We sat in a development area at one of the most successful game developers on 
the planet. Over the years, earlier generations of the game he demoed sold over 
50 million copies and generated billions of dollars in revenue.

“So, when will this version be on the market?” I asked.
He shrugged. “In about five months, and we’ve still got a lot of work to do.”
He had responsibility for game play and artificial intelligence functionality in an 

application that encompassed more than three million lines of code.
“Do you guys use any software engineering techniques?” I asked, half-expecting 

that he’d laugh and shake his head.
He paused and thought for a moment. Then he slowly nodded. “We adapt them to 

our needs, but sure, we use them.”
“Where?” I asked, probing.
“Our problem is often translating the requirements the creatives give us.”
“The creatives?” I interrupted.
“You know, the guys who design the story, the characters, all the stuff that make 

the game a hit. We have to take what they give us and produce a set of technical 
requirements that allow us to build the game.”

“And after the requirements are established?”
He shrugged. “We have to extend and adapt the architecture of the previous version 

of the game and create a new product. We have to create code from the requirements, 
test the code with daily builds, and do lots of things that your book recommends.”

“You know my book?” I was honestly surprised.
“Sure, used it in school. There’s a lot there.”
“I’ve talked to some of your buddies here, and they’re more skeptical about the 

stuff in my book.”
He frowned. “Look, we’re not an IT department or an aerospace company, so we 

have to customize what you advocate. But the bottom line is the same—we need to 
produce a high-quality product, and the only way we can accomplish that in a repeat-
able fashion is to adapt our own subset of software engineering techniques.”

“And how will your subset change as the years pass?”
He paused as if to ponder the future. “Games will become bigger and more com-

plex, that’s for sure. And our development timelines will shrink as more competition 
emerges. Slowly, the games themselves will force us to apply a bit more development 
discipline. If we don’t, we’re dead.”

*****

Computer software continues to be the single most important technology on the world 
stage. And it’s also a prime example of the law of unintended consequences. Sixty 
years ago no one could have predicted that software would become an indispensable 
technology for business, science, and engineering; that software would enable the 
creation of new technologies (e.g., genetic engineering and nanotechnology), the 
extension of existing technologies (e.g., telecommunications), and the radical change 
in older technologies (e.g., the media); that software would be the driving force behind 
the personal computer revolution; that software applications would be purchased by 
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consumers using their mobile devices; that software would slowly evolve from a prod-
uct to a service as “on-demand” software companies deliver just-in-time functionality 
via a Web browser; that a software company would become larger and more influen-
tial than all industrial-era companies; or that a vast software-driven network would 
evolve and change everything from library research to consumer shopping to political 
discourse to the dating habits of young (and not so young) adults.

As software’s importance has grown, the software community has continually 
attempted to develop technologies that will make it easier, faster, and less expensive 
to build and support high-quality computer programs. Some of these technologies are 
targeted at a specific application domain (e.g., website design and implementation); 
others focus on a technology domain (e.g., object-oriented systems or aspect-oriented 
programming); and still others are broad based (e.g., operating systems such as Linux). 
However, we have yet to develop a software technology that does it all, and the likeli
hood of one arising in the future is small. And yet, people bet their jobs, their com-
forts, their safety, their entertainment, their decisions, and their very lives on computer 
software. It better be right.

This book presents a framework that can be used by those who build computer 
software—people who must get it right. The framework encompasses a process, a set 
of methods, and an array of tools that we call software engineering.

To build software that is ready to meet the challenges of the twenty-first century, 
you must recognize a few simple realities:

∙	 Software has become deeply embedded in virtually every aspect of our lives. The 
number of people who have an interest in the features and functions provided by 
a specific application1 has grown dramatically. A concerted effort should be made 
to understand the problem before a software solution is developed.

∙	 The information technology requirements demanded by individuals, businesses, 
and governments grow increasingly complex with each passing year. Large 
teams of people now create computer programs. Sophisticated software that 
was once implemented in a predictable, self-contained computing environment 
is now embedded inside everything from consumer electronics to medical 
devices to autonomous vehicles. Design has become a pivotal activity.

∙	 Individuals, businesses, and governments increasingly rely on software for 
strategic and tactical decision making as well as day-to-day operations and 
control. If the software fails, people and major enterprises can experience 
anything from minor inconvenience to catastrophic consequences. Software 
should exhibit high quality.

∙	 As the perceived value of a specific application grows, the likelihood is that 
its user base and longevity will also grow. As its user base and time in use 
increase, demands for adaptation and enhancement will also grow. Software 
should be maintainable.

These simple realities lead to one conclusion: Software in all its forms and across 
all its application domains should be engineered. And that leads us to the topic of 
this book—software engineering.

1	 We will call these people “stakeholders” later in this book.
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	 1 .1 	T h e Nat u r e o f So f t wa r e

Today, software takes on a dual role. It is a product, and the vehicle for delivering a 
product. As a product, it delivers the computing potential embodied by computer 
hardware or, more broadly, by a network of computers that are accessible by local 
hardware. Whether it resides within a mobile device, on the desktop, in the cloud, or 
within a mainframe computer or autonomous machine, software is an information 
transformer—producing, managing, acquiring, modifying, displaying, or transmitting 
information that can be as simple as a single bit or as complex as an augmented-
reality representation derived from data acquired from dozens of independent sources 
and then overlaid on the real world. As the vehicle used to deliver a product, software 
acts as the basis for the control of the computer (operating systems), the communica-
tion of information (networks), and the creation and control of other programs (soft-
ware tools and environments).

Software delivers the most important product of our time—information. It trans-
forms personal data (e.g., an individual’s financial transactions) so that the data can 
be more useful in a local context; it manages business information to enhance com-
petitiveness; it provides a gateway to worldwide information networks (e.g., the Inter-
net); and provides the means for acquiring information in all its forms. It also provides 
a vehicle that can threaten personal privacy and a gateway that enables those with 
malicious intent to commit criminal acts.

The role of computer software has undergone significant change over the last 
60 years. Dramatic improvements in hardware performance, profound changes in com-
puting architectures, vast increases in memory and storage capacity, and a wide vari-
ety of exotic input and output options have all precipitated more sophisticated and 
complex computer-based systems. Sophistication and complexity can produce dazzling 
results when a system succeeds, but they can also pose huge problems for those who 
must build and protect complex systems.

Today, a huge software industry has become a dominant factor in the economies of 
the industrialized world. Teams of software specialists, each focusing on one part of the 
technology required to deliver a complex application, have replaced the lone program-
mer of an earlier era. And yet, the questions that were asked of the lone programmer 
are the same questions that are asked when modern computer-based systems are built:2

∙	 Why does it take so long to get software finished?
∙	 Why are development costs so high?
∙	 Why can’t we find all errors before we give the software to our customers?
∙	 Why do we spend so much time and effort maintaining existing programs?
∙	 Why do we continue to have difficulty in measuring progress as software is 

being developed and maintained?

2	 In an excellent book of essays on the software business, Tom DeMarco [DeM95] argues the 
counterpoint. He states: “Instead of asking why software costs so much, we need to begin 
asking ‘What have we done to make it possible for today’s software to cost so little?’ The 
answer to that question will help us continue the extraordinary level of achievement that has 
always distinguished the software industry.”
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These, and many other questions, are a manifestation of the concern about software 
and how it is developed—a concern that has led to the adoption of software engineer-
ing practice.

1.1.1  Defining Software
Today, most professionals and many members of the public at large feel that they 
understand software. But do they?

A textbook description of software might take the following form:

Software is: (1) instructions (computer programs) that when executed provide desired 
features, function, and performance; (2) data structures that enable the programs to ade-
quately manipulate information; and (3) descriptive information in both hard copy and 
virtual forms that describes the operation and use of the programs.

There is no question that other more complete definitions could be offered. But a 
more formal definition probably won’t measurably improve your understanding. To 
accomplish that, it’s important to examine the characteristics of software that make it 
different from other things that human beings build. Software is a logical rather than 
a physical system element. Therefore, software has one fundamental characteristic that 
makes it considerably different from hardware: Software doesn’t “wear out.”

Figure 1.1 depicts failure rate as a function of time for hardware. The relationship, 
often called the “bathtub curve,” indicates that hardware exhibits relatively high fail-
ure rates early in its life (these failures are often attributable to design or manufactur-
ing defects); defects are corrected, and the failure rate drops to a steady-state level 
(hopefully, quite low) for some period of time. As time passes, however, the failure 
rate rises again as hardware components suffer from the cumulative effects of dust, 

Figure 1.1
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vibration, abuse, temperature extremes, and many other environmental maladies. 
Stated simply, the hardware begins to wear out.

Software is not susceptible to the environmental maladies that cause hardware to 
wear out. In theory, therefore, the failure rate curve for software should take the form 
of the “idealized curve” shown in Figure 1.2. Undiscovered defects will cause high 
failure rates early in the life of a program. However, these are corrected and the curve 
flattens as shown. The idealized curve is a gross oversimplification of actual failure 
models for software. However, the implication is clear—software doesn’t wear out. 
But it does deteriorate!

This seeming contradiction can best be explained by considering the actual curve 
in Figure 1.2. During its life,3 software will undergo change. As changes are made, it 
is likely that errors will be introduced, causing the failure rate curve to spike as shown 
in the “actual curve” (Figure 1.2). Before the curve can return to the original steady-
state failure rate, another change is requested, causing the curve to spike again. Slowly, 
the minimum failure rate level begins to rise—the software is deteriorating due to 
change.

Another aspect of wear illustrates the difference between hardware and software. 
When a hardware component wears out, it is replaced by a spare part. There are no 
software spare parts. Every software failure indicates an error in design or in the 
process through which design was translated into machine executable code. Therefore, 
the software maintenance tasks that accommodate requests for change involve consid-
erably more complexity than hardware maintenance.

Figure 1.2
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3	 In fact, from the moment that development begins and long before the first version is deliv-
ered, changes may be requested by a variety of different stakeholders.
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1.1.2  Software Application Domains
Today, seven broad categories of computer software present continuing challenges for 
software engineers:

System software. A collection of programs written to service other programs. 
Some system software (e.g., compilers, editors, and file management utilities) pro-
cesses complex, but determinate,4 information structures. Other systems applications 
(e.g., operating system components, drivers, networking software, telecommuni
cations processors) process largely indeterminate data.

Application software. Stand-alone programs that solve a specific business need. 
Applications in this area process business or technical data in a way that facilitates 
business operations or management/technical decision making.

Engineering/scientific software. A broad array of “number-crunching” or data 
science programs that range from astronomy to volcanology, from automotive stress 
analysis to orbital dynamics, from computer-aided design to consumer spending 
habits, and from genetic analysis to meteorology.

Embedded software. Resides within a product or system and is used to implement 
and control features and functions for the end user and for the system itself. Embedded 
software can perform limited and esoteric functions (e.g., key pad control for a micro-
wave oven) or provide significant function and control capability (e.g., digital functions 
in an automobile such as fuel control, dashboard displays, and braking systems).

Product-line software. Composed of reusable components and designed to 
provide specific capabilities for use by many different customers. It may focus 
on a limited and esoteric marketplace (e.g., inventory control products) or attempt 
to address the mass consumer market.

Web/mobile applications. This network-centric software category spans a wide 
array of applications and encompasses browser-based apps, cloud computing,  
service-based computing, and software that resides on mobile devices.

Artificial intelligence software. Makes use of heuristics5 to solve complex prob-
lems that are not amenable to regular computation or straightforward analysis. 
Applications within this area include robotics, decision-making systems, pattern rec-
ognition (image and voice), machine learning, theorem proving, and game playing.

Millions of software engineers worldwide are hard at work on software projects in 
one or more of these categories. In some cases, new systems are being built, but in 
many others, existing applications are being corrected, adapted, and enhanced. It is 
not uncommon for a young software engineer to work on a program that is older than 
she is! Past generations of software people have left a legacy in each of the categories 
we have discussed. Hopefully, the legacy to be left behind by this generation will ease 
the burden on future software engineers.

4	 Software is determinate if the order and timing of inputs, processing, and outputs is predict-
able. Software is indeterminate if the order and timing of inputs, processing, and outputs 
cannot be predicted in advance.

5	 The use of heuristics is an approach to problem solving that employs a practical method or 
“rule of thumb” not guaranteed to be perfect, but sufficient for the task at hand.
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1.1.3  Legacy Software
Hundreds of thousands of computer programs fall into one of the seven broad appli-
cation domains discussed in the preceding subsection. Some of these are state-of-the-
art software. But other programs are older, in some cases much older.

These older programs—often referred to as legacy software—have been the focus 
of continuous attention and concern since the 1960s. Dayani-Fard and his colleagues 
[Day99] describe legacy software in the following way:

Legacy software systems  .  .  . were developed decades ago and have been continually 
modified to meet changes in business requirements and computing platforms. The pro-
liferation of such systems is causing headaches for large organizations who find them 
costly to maintain and risky to evolve.

These changes may create an additional side effect that is often present in legacy 
software—poor quality.6 Legacy systems sometimes have inextensible designs, convoluted 
code, poor or nonexistent documentation, test cases and results that were never archived, 
and a poorly managed change history. The list can be quite long. And yet, these systems 
often support “core functions and are indispensable to the business.” What to do?

The only reasonable answer may be: Do nothing, at least until the legacy system 
must undergo some significant change. If the legacy software meets the needs of its 
users and runs reliably, it isn’t broken and does not need to be fixed. However, as 
time passes, legacy systems often evolve for one or more of the following reasons:

∙	 The software must be adapted to meet the needs of new computing environ-
ments or technology.

∙	 The software must be enhanced to implement new business requirements.
∙	 The software must be extended to make it work with other more modern 

systems or databases.
∙	 The software must be re-architected to make it viable within an evolving 

computing environment.

When these modes of evolution occur, a legacy system must be reengineered so 
that it remains viable in the future. The goal of modern software engineering is to 
“devise methodologies that are founded on the notion of evolution; that is, the notion 
that software systems change continually, new software systems can be built from the 
old ones, and  .  .  . all must interact and cooperate with each other” [Day99].

	 1 .2 	 De f i n i ng t h e Di s c i p l i n e

The IEEE [IEE17] has developed the following definition for software engineering:

Software Engineering: The application of a systematic, disciplined, quantifiable approach 
to the development, operation, and maintenance of software; that is, the application of 
engineering to software.

6	 In this case, quality is judged based on modern software engineering thinking—a somewhat 
unfair criterion since some modern software engineering concepts and principles may not 
have been well understood at the time that the legacy software was developed.
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And yet, a “systematic, disciplined, and quantifiable” approach applied by one 
software team may be burdensome to another. We need discipline, but we also need 
adaptability and agility.

Software engineering is a layered technology. Referring to Figure 1.3, any engi-
neering approach (including software engineering) must rest on an organizational 
commitment to quality. You may have heard of total quality management (TQM) or 
Six Sigma, and similar philosophies7 that foster a culture of continuous process 
improvement. It is this culture that ultimately leads to more effective approaches to 
software engineering. The bedrock that supports software engineering is a quality 
focus.

The foundation for software engineering is the process layer. The software engi-
neering process is the glue that holds the technology layers together and enables 
rational and timely development of computer software. Process defines a framework 
that must be established for effective delivery of software engineering technology. The 
software process forms the basis for management control of software projects and 
establishes the context in which technical methods are applied, work products (mod-
els, documents, data, reports, forms, etc.) are produced, milestones are established, 
quality is ensured, and change is properly managed.

Software engineering methods provide the technical how-to’s for building software. 
Methods encompass a broad array of tasks that include communication, requirements 
analysis, design modeling, program construction, testing, and support. Software engi-
neering methods rely on a set of basic principles that govern each area of the technol-
ogy and include modeling activities and other descriptive techniques.

Software engineering tools provide automated or semi-automated support for the 
process and the methods. When tools are integrated so that information created by 
one tool can be used by another, a system for the support of software development, 
called computer-aided software engineering, is established.

	 1 .3 	T h e So f t wa r e Pro c e s s

A process is a collection of activities, actions, and tasks that are performed when 
some work product is to be created. An activity strives to achieve a broad objective 
(e.g., communication with stakeholders) and is applied regardless of the application 
domain, size of the project, complexity of the effort, or degree of rigor with which 

7	 Quality management and related approaches are discussed throughout Part Three of this book.
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